Scaled Tree Fractals Do not Strictly Self-assemble

نویسندگان

  • Kimberly Barth
  • David Furcy
  • Scott M. Summers
  • Paul Totzke
چکیده

In this paper, we show that any scaled-up version of any discrete self-similar tree fractal does not strictly self-assemble, at any temperature, in Winfree’s abstract Tile Assembly Model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Assembly of 4-Sided Fractals in the Two-Handed Tile Assembly Model

In this paper, we consider the strict self-assembly of fractals in one of the most well-studied models of tile based self-assembling systems known as the Two-handed Tile Assembly Model (2HAM). We are particularly interested in a class of fractals called discrete self-similar fractals (a class of fractals that includes the discrete Sierpinski’s carpet). We present a 2HAM system that strictly sel...

متن کامل

Self - Assembly of Discrete Self - Similar Fractals ( extended abstract ) ∗

In this paper, we search for absolute limitations of the Tile Assembly Model (TAM), along with techniques to work around such limitations. Specifically, we investigate the self-assembly of fractal shapes in the TAM. We prove that no self-similar fractal fully weakly self-assembles at temperature 1, and that certain kinds of self-similar fractals do not strictly self-assemble at any temperature....

متن کامل

Self - Assembly of Discrete Self - Similar Fractals ( Extended

In this paper, we search for absolute limitations of the Tile Assembly Model (TAM), along with techniques to work around such limitations. Specifically, we investigate the self-assembly of fractal shapes in the TAM. We prove that no self-similar fractal fully weakly self-assembles at temperature 1, and that certain kinds of self-similar fractals do not strictly self-assemble at any temperature....

متن کامل

FRACTAL STRUCTURES DRIVEN by SELF-GRAVITY: Molecular clouds and the Universe

Fractals have been introduced by Mandelbrot (1975) to define geometrical ensembles, or mathematical sets, that have a fractional dimension. He pioneered the study of very irregular mathematical sets, where the methods of classical calculus cannot be applied. Fractals are not smooth nor differentiable; they are characterized by self-similarity. Their geometrical structure has details at all scal...

متن کامل

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014